
Dabbling in the Warp: A Brief Journey into Non-Euclidean Geometry

by Casey Davis

Around 2300 years ago, a Greek man named Euclid wrote a book called 

Elements. He began with a rather simple set of definitions and assumptions, 

and upon this humble foundation he constructed 465 theorems which have 

become the basis of two- and three-dimensional geometry, as well as much 

of number theory. Euclid’s Elements was not the first work of its kind—nor 

was it by any means the last—but for over two millennia his was the 

definitive treatise on geometry. However, as marvelous as this mathematical 

wonder is, it is not the only possible system of geometry. Various 

mathematicians in the last two centuries have demonstrated that, while 

Euclid’s geometry is still completely valid under the proper assumptions, 

other systems, even systems contradicting Euclid, are also viable.

While it is in some senses a work of art (some have called it a 

“cathedral of geometry,” with the postulates as cornerstones), Euclid’s 

system of geometry is above all else a formal system.  A formal system 

consists of primitive terms, basic technical terms; defined terms, technical 

terms whose meaning is explained by means of previously introduced terms; 

axioms, primary statements assumed about the terms; and theorems, more 

advanced statements logically deduced from definitions, axioms, and 

previous theorems (Trudeau 6). Thus (provided that the logic of the system 

is acceptable) the reliability of the theorems, the final results of the 

system, can be traced back to the reliability of the axioms and definitions. If 



we accept these initial conditions and the system of logic used, then we 

must, logically, accept the theorems deduced from them. If, then, the goal of 

a formal system is to convince an audience of the truth of its theorems, it 

would be wise to begin with terms and axioms that are simple and universally 

accepted. Euclid did just this at the beginning of Book I of his Elements: his 

23 primitive and defined terms merely explain what he means by such 

concepts as “point,” “line,” “circle,” “right angle,” and so on (see Appendix 

A for a complete list of Euclid’s definitions). His axioms consist of five 

“common notions,” which are simple algebraic and geometric concepts 

concerning equality of figures and/or numbers and their combinations, and 

five postulates, assumed statements about the existence and state of 

straight lines, circles, right angles, and nonparallel lines (see Appendix B for 

a complete list of Euclid’s common notions and postulates). These initial 

statements—with the possible exception of the controversial fifth 

postulate, which will be discussed further below—are so simple and elegant 

that the theorems founded upon them were almost universally accepted 

throughout the western world as the apex of geometrical truth for over two 

thousand years.

Despite the complaints of countless thousands of high school students, 

Euclid’s Elements really is a very elegant work. It is organized as a sort of a 

network of geometrical proofs, beginning with a few simple ones (equilateral 

triangles exist,  based on the axioms and definitions, then progressing to 

more and more complex proofs, each based on the conclusions of the 



previous ones. The system follows the proof network format so well that the 

interdependencies of theorems can even be mapped out as a network 

diagram, as in the beginning of Lewis Carroll’s play Euclid and his Modern 

Rivals (Carroll 8) (see Appendix C for a copy of Carroll’s network diagram). 

For example, Theorem 9 depends on Theorem 8, which depends on Theorem 

7, which depends on Theorem 5, which depends on both Theorem 4 and 

Theorem 3; Theorem 3 is based on Theorem 2, which is based on Theorem 1. 

All of these theorems depend upon the conclusions of previous theorems, 

except for Theorem 1 and Theorem 4, which are based solely upon the 

definitions, postulates, and common notions (Carroll 8; Euclid Book I). So we 

see that, as in all formal systems, all of Euclid’s 465 theorems can trace 

their validity back to his axioms.

But are the axioms really valid? This question has plagued geometers 

for over two thousand years, and it is very important, for if the foundational 

axioms are removed, Euclid’s entire “cathedral of geometry” collapses in on 

itself. The Fifth Postulate, regarding nonparallel lines (see Appendix B) has 

been particularly controversial, as it lacks the elegant simplicity of the other 

four postulates and does not seem so obvious, sounding more like a theorem 

than an axiom (Trudeau 118). Many mathematical historians have even 

suggested that Euclid himself was uncomfortable with the Fifth Postulate; 

for the first 28 Theorems in Book I of the Elements do not require its 

invocation, while the remaining 20 in that book (except for Theorem 31) are 

based on its validity, almost as if Euclid was putting of its use as long as 



possible (Trudeau 44). But whether Euclid liked it or not, the Fifth Postulate 

was the most controversial portion of the Elements, and for millennia avant-

garde mathematicians tried to prove it as a theorem using “neutral 

geometry;” that is, Euclid’s definitions, common notions, and the four other 

postulates. Most of their attempts involved replacing the Fifth Postulate 

with a similar but simpler postulate, usually regarding parallel lines. The first 

of these that we know of was a Greek philosopher-scientist named 

Poseidonios, who was active around two centuries after Euclid wrote the 

Elements. He tried to prove Euclid’s Fifth Postulate by replacing it with the 

postulate “Parallel straight lines are equidistant” (Trudeau 119-120). Using 

this new postulate, together with the context of neutral geometry, it is 

possible to prove the Fifth Postulate; however, it is also possible to prove 

Poseidonios’s Postulate using Euclid’s Fifth Postulate together with the 

context of neutral geometry, so the two theorems are logically identical, and 

this circular logic has not really accomplished anything. Dozens of later 

mathematicians tried to succeed where Poseidonios could not, creating many 

postulates to replace Euclid’s Fifth Postulate—some not directly mentioning 

parallel lines at all—but all failed as he did (Trudeau 126-131). The primary 

reason for this is that while some of the replacement postulates seemed 

radically different from Euclid’s Fifth Postulate, they all were logically 

equivalent to it, and therefore failed in the same area where it did.

By the beginning of the 19th century, after trying and failing to prove 

Euclid’s Fifth Postulate, several prominent mathematicians had actually 



begun to seriously consider the possibility that such a proof was not only 

difficult to find, but in fact impossible. This would mean that Postulate Five 

is not implied by neutral geometry alone, and in fact “is supported solely by 

the judgment of our senses” (Trudeau 154). Of course, our senses are close 

to meaningless in geometry because they lack the infinite precision required, 

for example, to distinguish between two lines that are parallel and two lines 

that are almost parallel, but meet after, say, 10 000 light-years. A fine and 

nearly immeasurable distinction, but in geometry a very crucial one. But in 

any event, the conclusion—not proven, but inferred—was finally reached 

that “neutral geometry by itself does not imply Postulate 5” (Trudeau 154).

A few decades later, some mathematicians—notably Gauss, 

Schweikart, Bolyai, and Lobachevsky—began to make the transition from 

“neutral geometry by itself does not imply Postulate 5” to “a new geometry 

contrary to Euclid’s is logically possible” (Trudeau 154). Specifically, they 

removed the Fifth Postulate and replaced it with a new postulate (called 

~Playfair’s Postulate; that is, the opposite of Playfair’s Postulate) which 

was not logically equivalent to Euclid’s Fifth Postulate, but in fact its logical 

opposite: that, given a straight line and a point not on that line, there exist 

not only one, but multiple straight lines through the point that are parallel to 

the given line (Trudeau 159)! Using this new postulate, plus neutral 

geometry, these new geometers rejected all theorems depending on the Fifth 

Postulate and worked out an entirely new set of theorems based on this new 

“hyperbolic geometry” (from Greek hyperbole, excess; that is, an excess of 



parallels). By demonstrating that hyperbolic geometry was as consistent 

(that is, noncontradictory) as Euclidean geometry, they showed that a 

system containing neutral geometry plus the negation of Euclid’s Fifth 

Postulate and proved once and for all that Euclid’s Fifth Postulate does not 

automatically follow from neutral geometry.

Some interesting other conclusions were drawn from hyperbolic 

geometry; that is, using Euclid’s primitive terms, definitions, common 

notions, and first four postulates, along with an extension of ~Playfair’s 

Postulate that we shall call the Hyperbolic Postulate. First of all, Euclid’s 

Theorems 1 through 28 and 31 can still be considered valid, since they do 

not depend on the Fifth Postulate (Trudeau 98-99). However, everything 

based on the Fifth Postulate in any way must be rejected. This includes such 

seemingly obvious statements such as “lines parallel to the same line are 

parallel,” “the sum of a triangle’s angles is 180°,” a formula for the area of 

a parallelogram, a proof for the existence of squares, and the Pythagorean 

Theorem (Trudeau 99). These are replaced by an interesting network of 

completely different theorems. For example, in hyperbolic geometry (neutral 

geometry plus the Hyperbolic Postulate), it can be proven that, given a 

straight line AB and a point P above it, there are two “asymptotic parallels” 

through P, one sloping down to the left and the other sloping down to the 

right,  that asymptotically approach AB, but never actually reach it, thus 

fitting Euclid’s definition of “parallel.” Additionally, there are an infinite 

number of “divergent parallels” through P and above the two asymptotic 



parallels that not only never meet AB, but constantly “curve” away from it 

(Trudeau 178-179). Conversely, any lines through P and under the 

asymptotic parallels meet AB at some point and are therefore not parallel to 

it. Certain new figures are also allowed, including “biangles,” which appear 

similar to triangles but extend infinitely in the direction where one of the 

corners ought to be because two of the sides are asymptotic parallels, and 

never actually meet at a point (199). In Euclidean geometry this would not be 

considered a figure at all, since two of its sides, being parallel, always remain 

equidistant. The Saccheri quadrilateral (a certain sort of four-sided figure, 

with two sides perpendicular to the base and equal to each other), which is 

equivalent to a rectangle in Euclidean geometry, is also very different in 

hyperbolic geometry (Trudeau 132-147).

We have seen some of the radical differences resulting from negating 

Euclid’s Fifth Postulate in hyperbolic geometry. But is this the only change 

that can be made to the system? Perhaps not. In 1854, George Riemann 

delivered a paper claiming that “replacing Postulate 5 with its negation was 

not the only way Euclidean geometry could be tampered with, and within a 

few years other consistent non-Euclidean geometries made their 

appearance” (Trudeau 158). One of the most interesting of these, called 

Riemann double-elliptic geometry, involves redefining a maximally extended 

straight line as boundless, but finite in length. This implies that the continued 

straight line somehow curves back on itself and connects to its other end if 

it is extended far enough. This negates both the Second Postulate, which 



implies that a straight line can be extended infinitely; and the First 

Postulate,1  which implies that between any two points there can be one and 

only one straight line. Neither of these are true if an extended straight line 

eventually “curves” back on itself, because then the line cannot be extended 

infinitely, and two opposite points on the “loop” would then have at least two 

possible straight lines between them (one “curving” in each direction). 

Interestingly, this new geometry does not negate the Fifth Postulate, which 

merely says that certain pairs of lines are not parallel. Rather, it extends 

the Fifth Postulate in a theorem proving that no lines are parallel! Double-

elliptic geometry instead negates Theorem 27 of the Elements (Euclid Book 

I), which proved that parallel lines can exist under certain conditions. This 

proof depends on the “one and only one” implication of the First Postulate, 

and is therefore invalid in double-elliptic geometry. Furthermore, in double-

elliptic geometry it can be proved that all lines perpendicular to a given line 

meet at a certain point, that all maximally extended straight lines have the 

same finite length, that two given maximally extended straight lines must 

meet in two points, not one, and that the sum of the angles of a triangle is 

not fixed, is always greater than 180°, and increases with the size of the 

triangle2  (Kline 86)! Even π (that is, the ratio of a circle’s circumference to 

its diameter) is not a fixed constant in double-elliptic geometry, and in fact 

varies with the size of the circle, much in the same way that the angle-sum 

1 Actually, the First Postulate just says “To draw a straight line from any point to any point,” but in many 
theorems it is clear that Euclid used it to mean “one and only one straight line.”
2 This last point has the interesting consequence that a triangle in double-elliptic geometry can 
have three right angles.



varies with the size of a triangle.

By this point we have seen that much of the main body of a 

geometrical system can be changed merely by changing one or two of the 

initial axioms. Now this is all very nice logically, but what does it really mean? 

In terms of the formal system alone, the answer to this is “nothing.” A true 

formal system assigns no real meaning at all to its primitive terms; it is 

merely a system of logical connections between meaningless symbols. Any 

meaning assigned to these symbols and their interrelationships must be in 

the domain of the metasystem a separate, non-formal system that looks for 

deeper meaning behind the formal system. In geometry, the formal system 

consists of primitive terms, definitions, axioms, theorems, and the logical 

proofs that link them together: nothing more. Even the diagrams are not 

truly parts of the proofs, but merely visual aids to help the reader follow the 

proofs. However, metageometry would say that although geometry is a 

formal system, it is supposed to represent real shapes, lines, angles, and so 

on, whether they are in the physical world or some Platonic “world of ideas,” 

and that the diagrams that accompany the proofs are illustrations of that 

reality. Euclidean geometry is, of course, the geometry of a flat undistorted 

plane. In a plane without curvature or distortion, all of Euclid’s postulates are 

completely true: through any two points there is one and only one straight 

line, a straight line can be continued infinitely, a given center and radius can 

produce one and only one circle, all right angles are equal to each other, and 

any given line has exactly one parallel line through a given point not on that 



line. However, when the plane is curved or distorted in certain ways, some of 

these postulates are no longer valid. This is, according to metageometry, 

what non-Euclidean geometry represents: a curved or distorted plane. For 

example, imagine a circle in which length is distorted between the center and 

the circumference in such a way that if you began walking from the center 

out towards the circumference, you would shrink accordingly; thus the circle 

would seem infinitely large, since you could never reach the circumference. 

And of course it would be impossible to directly notice this distortion, 

because any measuring devices you brought with you would shrink 

proportionately (Trudeau 236-238). Now if we use this circle as our plane 

(this is called Poincaré’s Model), and assume that “straight line” means “the 

shortest distance between two points,” then any straight line must be, due 

to distortion, a segment of a circle that intersects the circumference of our 

“plane” at right angles. The only straight lines that would seem “straight” to 

somebody outside the plane, then, would be ones going through the center of 

the plane. Now with a little work, it can be demonstrated that this system 

does not follow Euclid’s Fifth Postulate, but instead follows the Hyperbolic 

Postulate! It is possible to have an infinite amount of straight lines parallel to 

a given straight line and through a given point not on that line, since these 

straight lines “curve” away from each other (Fletcher). Of course, relative 

to the plane, they are all straight, since their distortion is exactly the same 

as that of the plane. Thus Poincaré’s Model is represented perfectly by 

hyperbolic geometry. The outer surface of a trumpet’s bell, when treated as 



a plane, also operates under hyperbolic geometry (Trudeau 171).

And what about double-elliptic geometry? The best visual 

representation of this is probably a plane curved into the shape of a sphere. 

In this spherical plane, a straight line between two points would be a segment 

of a “great circle” (Kline 86), or the largest possible circle through those 

two points. This explains the invalidity of the Second Postulate in double-

elliptic geometry: a straight line cannot be continued indefinitely, for after 

going all the way around the plane it will loop back on itself, at which point it 

can go no further, being unbounded but finite. The First Postulate (or at 

least the “one and only one line” implication of it) is also violated, since 

between two antipodal (opposite) points, any number of straight lines can be 

drawn. The triangle with three right angles that I mentioned earlier is simple 

to draw: on a globe, for example, it would have one corner on the North Pole 

and the other two on the equator, 1/4 of the circumference apart from each 

other. And of course, there could be no parallel lines, since all straight lines, 

being great circles, must intersect somewhere. In fact, any two straight 

lines will intersect at two antipodal points.

So what are the implications of all this? Some geometrical “truths” 

that we take for granted are not necessarily true in all geometrical systems. 

We assume that pi is a constant, and yet on a spherical plane it can vary 

from its standard value all the way down to zero, decreasing as the diameter 

of the circle increases.3  We assume that the angles of a triangle always sum 

3 It can even be greater than its standard value on a radially wrinkled plane (such as, for 
example, that described by the graph of z=r•cos[5θ]).



to 180°, but in spherical geometry that, too, is variable. Even the concepts 

about parallel lines that mathematicians have tried to prove for the last two 

millennia do not hold up in hyperbolic geometry.

Until rather recently, it was assumed that, even though other 

geometrical systems were possible, our universe was definitely Euclidean. 

But even that has come under question. The Earth itself can be considered a 

non-Euclidean geometrical system: its surface (disregarding hills, valleys, 

oceans, and other nonuniformities) can be treated as a spherical plane. Lines 

of longitude would be examples of straight lines,4  meeting at the antipodal 

North Pole and South Pole. This is why planes seem to travel in curves when 

depicted on flat maps: on the spherical plane, their path really is straight, 

i.e., part of a great circle; it only seems curved when distorted onto a flat 

map. Even the universe itself might not really be Euclidean, but rather a 

three-dimensional non-Euclidean system: perhaps either inside a spherical 

version of Poincaré’s circle, billions of light-years in diameter (Trudeau 243-

244), or bent through a fourth dimension into a sort of a hypersphere (Kline 

86).

Of course, it is true that our universe seems Euclidean when we 

perform everyday geometrical measurements. This is actually because any 

plane, regardless of curves, distortions, or nonuniformity, is almost flat on a 

very small level, much in the same sense that the Earth seems flat on a 

small scale. In fact, our everyday measurements are on such a small scale 

4 Lines of latitude are actually not straight lines at all, except for the equator. Ironically, on most maps, 
latitudes are shown as straight lines while longitudes are not.



compared to the curvature/distortion/nonuniformity of the universe (if 

there is any) that on this local level, Euclidean geometry is a very close 

approximation of reality: parallel lines remain equidistant as close as we can 

measure them, the angle-sum of a triangle differs negligibly from 180°, and 

π is extremely close to 3.141592…5 . However, on a much larger scale (e.g., 

long-distance space travel or mapping the entire Earth), the differences 

between Euclidean geometry and reality become apparent, and if we 

stubbornly continue to persist in using Euclid’s conclusions, hideous errors 

could show up, such as the Mercator Projection and crashing into the sun.

These concepts have some interesting implications about the nature of 

geometrical truth, and in fact truth in general. There is no single absolute 

truth or true geometrical system; all “truths” can only be considered true 

relative to their respective axiom systems. We cannot simply say, “This 

geometrical system is right and the others are wrong.” Even if we could 

measure angles and lengths precisely enough to know for sure what system 

of geometry is the basis of this universe, that is no guarantee that other 

geometrical systems cannot be true, since they are all theoretical anyway. 

The truth of a system cannot really be known: the only hint of truth that we 

can actually find is internal consistency. Although we cannot know truth, we 

can say that a system is valid if it remains consistent. “There are no 

diamonds [of absolute truth]. People make up stories about what they 

experience. Stories that catch on are called ‘true’” (Trudeau 256). 

Consistency, then, is the only measure of the “truth” of an explanation.
5 If you really need more numbers, ask Matt Godwin.



Appendix A: Euclid’s Definitions
(from Euclid’s Elements, Book I)

Primitive Terms:
1. A point is that which has no part.
2. A line is breadthless length.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
5. A surface is that which has length and breadth only.
6. The extremities of a surface are lines.
7. A plane surface is a surface which lies evenly with the straight lines of itself.

Defined Terms:
8. A plane angle is the inclination to one another of two lines in a plane which meet one 

another and do not lie in a straight line.
9. And when the lines containing the angle are straight, the angle is called rectilinear.
10. When a straight line set up on a straight line makes the adjacent angles equal to one 

another, each of the equal angles is right, and the straight line standing on the other is 
called a perpendicular to that on which it stands.

11. An obtuse angle is an angle greater than a right angle.
12. An acute angle is an angle less than a right angle.
13. A boundary is that which is an extremity of anything.
14. A figure is that which is contained by any boundary or boundaries.
15. A circle is a plane figure contained by one line such that all the straight lines falling 

upon it [the radii] from one point among those lying within are equal to one another.
16. And the point is called the center of the circle.
17. A diameter of the circle is any straight line drawn through the center and terminated in 

both directions by the circumference of the circle, and such a straight line also bisects 
the circle.

18. A semicircle is the figure contained by the diameter and the circumference cut off by 
it. And the center of the semicircle is the same as that of the circle.

19. Rectilinear figures are those which are contained by straight lines, trilateral figures 
[triangles], being those contained by three, quadrilateral those contained by four, and 
multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an 
isosceles triangle that which has two of its sides… equal, and a scalene triangle that 
which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an 
obtuse-angled triangle that which has an obtuse angle, and an acute-angled triangle 
that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and right-angled…
23. Parallel straight lines are straight lines which, being in the same plane and being 

produced indefinitely in both directions, do not meet one another in either direction.



Appendix B: Euclid’s Common Notions and Postulates
(from Euclid’s Elements, Book I)

Common Notions:
1. Things which are equal to the same thing are also equal to one another.

[If a=b and b=c then a=c.]
2. If equals be added to equals, the wholes are equal.

[If a=b and c=d then a+c=b+d.]
3. If equals be subtracted from equals, the remainders are equal.

[If a=b and c=d then a-c=b-d.]
4. Things which coincide with one another are equal to one another.
5. The whole is greater than the part.

[a+b>a.]

Postulates:
1. [It is possible] to draw [one and only one] straight line from any point to any point.
2. [It is possible] to produce a finite straight line continuously in a straight line.
3. [It is possible] to describe [one and only one] circle with any center and [radius].
4. All right angles are equal to one another.
5. If a straight line falling on two straight lines make the interior angles on the same side 

less than two right angles, the two straight lines, if produced indefinitely, meet on that 
side on which are the angles less than the two right angles.



Appendix C: Lewis Carroll’s Network Diagram
(from Carroll’s Euclid and his Modern Rivals)
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