
Extra Practice: Conservation of Energy
(see next page for any material property values you may need)

1) A team of dwarven mining engineers needs to seal off a tunnel in a hurry (there's a
balrog on its way up from the depths), so they decide to form a plug by fooding it
frst with basaltic magma at 1300°C and then with water at 10°C. The magma
solidifes; the steam is allowed to leave through ventilation shafts as it forms, so it
doesn't get any warmer after it vaporizes. If the desired end result is 1,000,000 kg of
solid basalt at 500°C, how much water is needed? (Assume that the air, the tunnel
walls, and the balrog do not absorb or contribute a signifcant amount of heat.)

2) Some solar power plants are experimenting with the use of PCMs (phase-change
materials, such as the sodium acetate you worked with in lab) as a method of storing
extra energy after bright sunny days. When the power plant is producing more
energy than is needed at the moment, excess energy is used to melt a quantity of
PCM; on cloudy days when not enough power is generated, the molten PCM is
allowed to solidify and the heat it gives off is used to generate extra electrical power.

a) If a material is particularly useful for storing energy in this way, does
this tell you something about value of the c, the ∆H, or the Tmelt of
the material? Would you expect that value to be large or small? Why?

b) Suppose that a certain city requires 1.21 GW of power (that is, 1.21
billion joules per second), and the Department of Power wants to
make sure that it can provide power reliably throughout up to 24
hours of complete darkness by using salt as a PCM. How much salt
should the power plant have in store to be prepared for this?

3) Suppose we have a 3 kg block of solid iron at 500°C. We place this block of iron into
an insulated vat of icy water that is currently half solid and half liquid, close the lid,
and wait for the system to reach thermal equilibrium.

a) If the vat starts with 1000 kg of icy water, fnd the fnal equilibrium
temperature and the fnal state of the water.

b) If the vat starts with 0.01 kg of icy water, fnd the fnal equilibrium
temperature and the fnal state of the water. (Of course here it's
more like we're dripping the icy water onto the iron instead of
placing the iron in the water.)

c) If the vat starts with 1 kg of icy water, fnd the fnal equilibrium
temperature and the fnal state of the water.



Useful Information

Material csolid (kJ/kgK) cliquid (kJ/kgK) cgas (kJ/kgK) ∆Hmelt (kJ/kg) ∆Hboil (kJ/kg) Tmelt (°C) Tboil (°C)

basalt 1.4 1.0 — 400 — 1200 2222

water 2.06 4.18 2.92 333.5 2257 0 100

iron 0.45 — — 247.3 — 1538 —

salt — — — 410 — 385 —

(Some values have been left out because are not relevant for these problems.)

Relevant Videos

Molten rock mixing with liquid water:
https://www.youtube.com/watch?v=ahZD95l1MvM

Hot nickel ball placed on ice:
https://www.youtube.com/watch?v=w0o5xVkzo54



Solutions

1) The granite starts above its melting point and ends below its melting point, so it will
need to undergo a change in Eth, a change in Ebond, and another change in Eth. The
water starts below its boiling point but is vented away as soon as it vaporizes, so it will
need only a change in Eth (to reach 100°C) and a change in Ebond. That means our
conservation of energy equation will look like this:

∆Ethmagma + ∆Ebondmagma/basalt + ∆Ethbasalt + ∆Ethwater + ∆Ebondwater/steam = 0
Substituting the relevant formulas:

mc∆Tmagma + ∆m∆Hmagma + mc∆Tbasalt + mc∆Twater + ∆m∆Hwater = 0
mc(Tf –Ti)magma + (mf –mi)∆Hmagma + mc(Tf –Ti)basalt + mc(Tf –Ti)water + (mf –mi)∆Hwater = 0

Recall that we uses the mass of the higher energy state (liquid basalt; gaseous water)
as the indicator for bond energy:

mc(Tf –Ti)magma + (0 –m)∆Hmagma + mc(Tf –Ti)basalt + mc(Tf –Ti)water + (m–0)∆Hwater = 0
mc(Tf –Ti)magma + (–m)∆Hmagma + mc(Tf –Ti)basalt + mc(Tf –Ti)water + m∆Hwater = 0

Of these, the only unknown value is the mass of the water, so isolate mwater:

mwater=
−m c(T f −T i)magma+mΔ H magma−m c (T f −T i)basalt

c(T f −T i)water+Δ H water

We can factor out the m from the numerator, because they all mean 106 kg:

mwater=
−109kg⋅(1kJ /kgK⋅(1200° C−1300° C)+400kJ /kg−1.4kj /kgK⋅(500° C−1200°C))

4.18kJ /kgK⋅(100° C−10° C)+2257 kJ/kg

mwater=562,000,000 kg  or 562,000 metric tons.
(This means that cooling off each kg of magma requires 562 kg of water!)

That balrog won't know what him, but the reservoir might be a little low for a while.

2)  a) If we are storing energy by pushing the PCM through a phase change, what we're
storing is ∆Ebond, that is, ∆m∆H. Ideally we want the PCM to store as much energy
per kilogram as possible—and energy per kilogram (of phase-changed material) is
precisely the defnition of ∆H, so a large value of ∆H is what we're looking for.

b) Power means energy per unit of time, so to fnd the energy required we multiply
power by time: 1.21 GW (1.21×109 joules per second) times 24 hours (24×60×60
seconds) equals 1.05×1014 J of Ebond, so that's the amount of bond energy the salt
needs to store. The formula for ∆Ebond is
∆Ebond = ∆m∆H, so ∆m = ∆Ebond / ∆H = (1.05×1014 J) / (4.1×105 J/kg) ≈ 2.56×108 kg.
In other words, about 256,000 metric tons. That's a lot of salt! Energy storage on
this large a scale is expensive… but then again the long-term costs of more
traditional means of generating power are far far worse. Little by little we progress!

(continued on next page)



3)  a) With that much water, we can assume that the phase change never fnishes—that
is, there will still be some solid ice at the end. Thus we can assume that the fnal
equilibrium temperature is still 0°C, and the only question is how much ice melts
as the iron cools down. The conservation of energy equation will look like this:

∆Ethiron + ∆Ebondice/water = 0
mc∆Tiron + ∆m∆Hwater = 0
∆m = –mc∆Tiron / ∆Hwater = – 3kg · 0.45 kJ/kgK · (–500K) / (333.5 kJ/K) = 2.02 kg

The fact that the result is positive means we are gaining 2.02 kg of liquid.

b) With so little water, we can assume that the iron hardly changes temperature at all,
and that the icy water completely melts, completely boils, and reaches equilibrium
with the still very hot iron. The equation will look like this:

∆Ethiron + ∆Ebondice/water + ∆Ethwater + ∆Ebondwater/steam + ∆Ethsteam = 0
mc∆Tiron + ∆m∆Hwater + mc∆Twater + ∆m∆Hsteam + mc∆Tsteam = 0
mc(Tf–Ti)iron + (mf–mi)∆Hwater + mc(Tf–Ti)water + (mf–mi)∆Hsteam + mc(Tf–Ti)steam = 0
mc(Tf–Ti)iron + (mf–mi)∆Hwater + mc(Tf–Ti)water + (mf–mi)∆Hsteam + mc(Tf–Ti)steam = 0
3kg · .45kJ/kgK · (Tf –500°C) + .005kg · 333.5kJ/kg

+ .01kg · 4.18kJ/kgK · 100K + .01kg · 2257kJ/kg
+ .01kg · 2.92kJ/kgK · (Tf  –100°C) = 0

The only unknown left is Tf , so we can solve for that fnal temperature.
I'm getting 471°C, so yes, the water boils, but the iron cools off quite a bit.

(I wasn't expecting that, but I should have—phase changes take a lot of energy,
especially with water's large ∆H, and water also has a much higher c than iron!)

c) This one is trickier because it is not immediately obvious whether the hot iron or
cold icy water will dominate, since their masses are not extremely different. Instead
we have to take it one step at a time, checking which object will reach any given
critical point frst. For example, to start with, either the water will completely melt
frst (as in b) or the iron will cool all the way to 0°C frst (as in a). To determine
which one happens, we fnd the amount of ∆E each change involves.

Suppose, for instance, that the water completely melts. That's ∆Ebond, so
∆Ebondice/water = ∆m∆Hwater = .5kg · 333.5kJ/kg = 166.75 kJ ≈ 167 kJ
is the amount of energy required to melt all the ice.

Alternatively, suppose the iron drops all the way to 0°C. That's ∆Eth, so
∆Ethiron = mc∆T = 3kg · .45kJ/kgK · (-500K) = -675 kJ
is the amount of energy the iron could give off as it cools to 0°C.

The ∆E for the ice melting is much smaller than the ∆E for the iron cooling, so we
know that the ice melts completely long before the iron would reach 0°C.

What happens next, though? Does the water reach 100°C and start boiling while
the iron is still hot? ...or does the iron cool beyond 100°C and reach a thermal
equilibrium with the still-liquid water? To fnd out, investigate those transitions:

(continued on next page)



Suppose the water reaches 100°C. That's ∆Eth, so
∆Ethwater = mc∆T = 1kg · 4.18kJ/kgK · 100K = 418 kJ
is the amount of energy the water must gain to reach 100°C (barely).
We'll have to combine this with the energy it took to melt the ice in the frst
place, for a total energy gain of 167 kJ + 418 kJ = 585 kJ.

Alternatively, suppose the iron drops from 500°C to 100°C. That's ∆Eth, so
∆Ethiron = mc∆T = 3kg · .45kJ/kgK · (-400K) = -540 kJ
is the energy the iron is able to provide while it cools to 100°C.

Now we're getting somewhere—this means the iron can't provide enough energy to
melt the icy water AND raise its temperature to 100°C! That tells us that the iron
drops all the way to 100°C while the now-liquid water is still on its way up towards
100°C, so they will meet somewhere in the middle, with the water all liquid.

With that knowledge, we can fnally set up a correct energy conservation equation:
∆Ebondice/water + ∆Ethwater + ∆Ethiron = 0
∆m∆Hwater + mc∆Twater + mc∆Tiron = 0
.5kg · 333.5kJ/kg + 1kg · 4.18kJ/kgK · (Tf – 0°C)

+ 3kg · .45kJ/kgK · (Tf – 500°C) = 0
The only unknown left is Tf , so we can solve for that fnal temperature.

I'm getting about 92°C, which is consistent with the notion that the iron
doesn't have quite enough energy to bring the water up to boiling.


