page 1

Name:

Math 222: Midterm #2

Show all work on problems that are more than straightforward calculations. Clearly mark answers.

1) Consider a mass-on-a-spring system with the given mass, damping coefficient, and spring constant. For each situation, **determine** whether the system is underdamped, overdamped, or critically damped; **explain** how you can tell; and **sketch** a sample graph of what its motion might look like. Do not solve.

A)	m=3 b=6 k=3
B)	m=1 $b=2$ $k=3$
C)	m=2 b=5 k=3

2) Suppose an electric circuit consists of a resistor (with R=20 Ω), an inductor (with L=10 H), a capacitor (with C = 0.001 F), and a voltage source providing oscillating voltage E=60sin(120 π t), all connected in series (i.e. as a single loop). Write a differential equation to model this circuit, using *t* (time) as the independent variable and *q* (charge) as the dependent variable. Do not solve.

3) Find the specific solution to y''-2y'-15=0. it initial conditions y(0)=1, y'(0)=-1.

page 2

Name:_____

4) Find the general solution to y'' + 4y' + 13y = 0.

5) Find the specific solution to $y'' + 4y' + 13y = 26t^2$ with initial conditions y(0)=0, y'(0)=1.

- 6) Assume that $y_1 = e^{5t}$ and $y_2 = t e^{5t}$ are solutions to some second order differential equation.
 - a) Calculate the Wronskian $W(y_1, y_2)$.

- b) What does the value of $W(y_1, y_2)$ tell you about y_1 and y_2 ?
- 7) Find the general solution to y'' 10y' + 25y = 0.

Name:_____

8) Find the general solution to $y'' - 10 y' + 25 y = \frac{e^{5t}}{t^5}$.

9) Find the general solution to y''' + y'' - 3y'' - 5y' - 2y = 0.

Math 222 Extra Credit

page 4

Name:_____

Show me what you can do!

Bonus I: Find the 8th derivative of $e^x \sin(x)$. There *is* a shortcut! Don't waste time trying to find ALL of the lesser derivatives. Look for patterns.

<u>Bonus II</u>: Prove that the difference of any two solutions of any nonhomogeneous equation must be a solution of the corresponding homogeneous equation.

Bonus III: Explain why solving the characteristic (aka auxiliary) quadratic leads to the correct r-values.

<u>Bonus IV</u>: You know how to raise *e* to complex powers, but how would you calculate, say, 5^{2+3i} ?

Bonus V: Find the quasi-frequency of the underdamped system in Problem #1.